
Geometricks
(sorry)

Zino @krugazor

It is

“obvious” when you look at it

Painful memories from high school

Quite the head scratcher when it surprises you while
coding

It is also

Probably the best understood domain in algorithmic

A lot of tips and tricks that look magical

A decent way to shine (and get invited to talk at a
conference)

If you have to

Draw complicated stuff (zealous UI design, games)

Transform stuff (image manipulation)

Use stuff that rely violently on it (MapKit)

Back to School 
(I know, I know)

Line: y = ax+b or mx+ny+p = 0

If you pick 3 points in a plane, there probably isn’t any
straight line that goes through them all

But triangles are pretty cool, actually

In practice
(let’s start slow)

Distance between two points
√((y₂-y₁)²+(x₂-x₁)²)

Inclination of a line
(y₁-y₂)/(x₂-x₁)

In practice

Line: Ax + By + C = 0

A = (y₁-y₂) B = (x₂-x₁)  
C = (x₁-x₂)*y₁ + (y₂-y₁)*x₁

Point: (m,n)

Distance: | Am + Bn + C | / √(A²+B²)

Distance between a line and a point

A bit of Swift

typealias Point = (x: Double, y: Double)

func distance(p1: Point, p2: Point) -> Double {  
 return sqrt((p2.y-p1.y)*(p2.y-p1.y)+(p2.x-p1.x)*(p2.x-p1.x)) 
} // pow is slower

Not true!

(your mileage may vary)

Not true!  
(“It’s Playground’s fault!”)

(your mileage may vary)

A bit of Swift
func getLineParameters(point1: Point, point2: Point)  
 -> (a: Double, b: Double, c: Double) {  
 let a = point1.y - point2.y  
 let b = point2.x - point1.x  
 let c = ((-b)*point1.y) + ((-a)*point1.x) // yup! 
  
 return (a,b,c) 
}

A bit of Swift

func getPerpendicularDistance(line: (a: Double, b: Double,
c: Double), point: Point) -> Double {  
 let num = abs(line.a * point.x + line.b * point.y + line.c) 
 let den = sqrt(line.a * line.a + line.b * line.b) 
 
 return num/den 
}

Ramer-Douglas-Peucker

Trivial case:
redundant point

Interesting case:
point “not far from redundant”

4 points -> 3 points (or even 2)A

B C D

Ramer-Douglas-Peucker
Start at the extremities (A & D)

Look for point that deviates the most (C)

If the distance between that point and the segment
exceeds a minimal ε, start again with (A & C) and (C & D)

If not, keep only the extremities

A bit of Swift
func douglaspeuckerSimplification(line: [Point], epsilon: Double) -> [Point] {  
 if line.count <= 2 { return [line.first!, line.last!] } 
 // Find the point with the maximum distance 
 var dmax : Double = 0 
 var index = 0  
 let (a,b,c) = getLineParameters(point1: line.first!, point2: line.last!) 
 for i in 1..<(line.count-1) { 
 let d = getPerpendicularDistance(line: (a,b,c), point: line[i])  
 if dmax < d {  
 dmax = d 
 index = i 
 } 
 }

A bit of Swift
 if dmax > epsilon { 
 let sub1 = Array(line[0..<index+1])  
 let sub2 = Array(line[index..<line.count])  
 let res1 = douglaspeuckerSimplification(line: sub1 , epsilon: epsilon) 
 var res2 = douglaspeuckerSimplification(line: sub2, epsilon: epsilon) 
 res2 = Array(res2.dropFirst()) 
 
 return res1 + res2  
 } else { 
 return [line.first!, line.last!] 
 } 
}

Demo

iPhone Xs

Click bait

point in a polygon

square (easyyyyyy)

circle or even oval (duh)

… machine learning?

Raytracing

Technique from the 3D world

A ray starts from the camera, then “hits” an object

From that point, find the lights that shine on that point

What does that have to do with 2D?

Even-Odd

How many times does a horizontal
“ray” to the point hit a segment?

Even number? we’re outside (eg , 0)

Odd Number? we’re inside (eg , 1)

2

3

Even-Odd
If the point is above or below the segment, no
intersection

If solving the equation y = point.x == y = line(segment) has
no solution, we don’t intersect

Else we intersect

We alternate outside/inside/outside/…

A bit of Swift
typealias Polygon = [Point]  
func evenOdd(_ point: Point, in poly: Polygon) -> Bool { 
 var inside = false  
 var j = poly.count - 1 
 for i in 0..<poly.count { 
 if (poly[i].y > point.y) != (poly[j].y > point.y)  
 &&  
 (point.x < poly[i].x + (poly[j].x - poly[i].x) * (point.y - poly[i].y) / (poly[j].y - poly[i].y)) { 
 inside = !inside  
 } 
 j = i 
 } 
 return inside  
}

Demo

iPhone Xs

(Vague) Conclusions

Disrupting dairy consumption, why not. Disrupting
geometry is a little harder (and useless)

A tiny teeny bit of maths makes the performance soar

Stack Overflow, that’s nice. Swift Algorithm Club, that’s
better

Swift Algorithm Club

Ray Wanderlicht

Classical algorithms with code, explanations, demos and
even animations!

https://github.com/raywenderlich/swift-algorithm-
club/

Swift Algorithm Club

Swift Geometric Club?

Eeeeeeeeeeh…

😎

Other questions?

Zino @krugazor

