Ceometricks

(sorry)

Zino @kruqazor

It is

* ‘Obvious” when you look at it
* Painful mewories from high school

* Quite the head seratcher when it surprises you while
coding

It is also

* Probably the best understood domain in algorithmic
* A lot of tips and tricks that look magical

* A decent way to shine (and get invited to talk at a
conference)

If you have to

* Praw complicated stuff (zealous Ul design, games)
* Transform stuff (image manipulation)

* Use stuff that rely violently on it (MapKit)

Back to School
(1 know, | know)

* Line:y=ax*b or mx+ny+*p=0

* |f you pick 2 points in a plane, there probably isnt any
straight line that goes through thew all

* But triangles are pretty cool, actually

In practice

(let’s start slow)
Pistance between two points
vily2-y1)2+(x>-x1)?) ;
Inclination of a line
(y:-y2)/(x2-x1) /

In practice

Distance between a line and a point *
* Line: Ax+By+(C=0 /
* A= (YI‘YZ) B = (x2-x1)
(= (XI‘XZ)*YI i (YZ“'YI)*XI

* Point: (m,n)
* Distance: | Am+Bn +(C |/ v(A2+B?)

A bit of Swift

* typealias Point = (x: Double, y: Pouble)

* fune distancelpl: Point, p2: Point) -> Double {
return sqri{(ip2.y-pl.y)*(p2.y-ply)+(p2.x-pl.x)*(p2.x-pl.x))
> // pow is slower

startPow = () "Feb 3, 2019 at 22:42

endPow = () "Feb 3, 2019 at 22:42

start () "Feb 3, 2019 at 22:42
(a+b)%(a+b)

end = () "Feb 3, 2019 at 22:43

timePow = endPow. (startPow) 40.25218307971954
time = end. (start) 32.06360900402069

(your wileage may vary)

iterations

startPow =
9..<iterations {
= sqrt(pow(p2.y-pl.y,2) + pow(p2.x-pl.x,2))

endPow = Date() 46.832216024398804 vs 45.93707299232483

~2.0% faster on average
Program ended with exit code: ©

start = Date()
7..<iterations {
= sqrt((p2.y-pl.y)*(p2.y-pl.y) + (p2.x-pl.x)*(p2.x-pl.x|))

end = Date()

timePow = endPow.timelntervalSince(startPow)
time = end.timeIntervalSince(start)

print('\ timePow \(time ")
print(-\ round((timePow*100)/time) - 10¢

(your wileage may vary)

A bit of Swift

* func getlineParameters(pointl: Point, point2: Point)
-> (a: Double, b: Double, ¢: Pouble) {
let a = pointly - point2y
let b = point2.x - pointl.x
let ¢ = ((-b)*pointly) * ((-a)*pointl.x) /7 yup!

return (a,b,c)

A bit of Swift

* fune getPerpendicularPistancelline: (a: Double, b: Double,
¢: Double), point: Point) -> Pouble £
let num = abs(line.a * point.x + line.b * pointy * line.c)
let den = sqri(line.a * line.a * line.b * line.b)

}refuru nom/den

Rawmer-Pouglas-Peucker

Interesting case:
point “hot far from redundant”
----------- &
R v

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
‘—'
-

Trivial case:
redundant point 4 points -> 3 points (or even 2)

Rawmer-Pouglas-Peucker

* Start at the extrewmities (A & D)
* Look for point that deviates the most (C)

* |f the distance between that point and the seqment
exceeds a minimal ¢, start again with (A & C) and (C & D)

* |f not, keep only the extremities

A bit of Swift

* func douglaspeuckerSimplification(line: LPoint], epsilon: Pouble) -> LPointl {
if line.count <= 2 { return lline.first!, line.last!] }
// Find the point with the maximum distance
var dmax : Double = 0
var index = (
let (a,b,c) = getlineParameters(pointl: line.first!, point2: line.last!)
foriin 1..(line.count-1) {
let d = getPerpendicularPistancelline: (a,b,c), point: linelil)
if dmax < d ¢
dmax = d
index =
)
)

A bit of Swift

* if dmax > epsilon {
let subl = Arrayl(linel0..cindex+11)
let sub2 = Array(linelindex..<line.countl)
let resl = douglaspeuckerSimplification(line: subl , epsilon: epsilon)
var res2 = douglaspeuckerSimplification(line: sub2, epsilon: epsilon)
res2 = Array(res2.dropFirst())

returnresl +res2
)else(
}re’rum Line.first! line.last!]

01:02 all %)

Drawing O points

iPhone Xs

Calculate Speed

£=30

RDP EvenOdd

Click bait

* pointin a polygon
* square (easyyyyyy)
* circle or even oval (duh)

* .. machine learning?

Raytracing

* Technique from the 30 world

* A ray starts from the camera, then “hits” an object

* From that point, find the lights that shine on that point
* What does that have to do with 207

Even-Odd

* How many times does a horizontal
“ray” to the point hit a seqgment?

* Even number? we're outside (eg, 0)

* (Odd Number? we're inside (eg, 1)

Even-Odd

* |f the point is above or below the segment, no
intersection

* |f solving the equation y = point.x == y = linelseqment) has
no solution, we don't intersect

* Else we intersect

* We alternate outside/inside/ovtside/...

A bit of Swift

* typealias Polygon = LPoint]
func evenOdd(_ point: Point, in poly: Polygon) -> Bool £
var inside = false
var j = poly.count - 1
foriin 0..<poly.count {
if ff(goly[i].y > pointy) != (polyljly > pointy)
(point.x < polyLil.x * (polyLjl.x - polyLil.x) * (pointy - polylily) / (polyLjly - polylily)) £
inside = linside
)
j=i
)
return inside

01:04 5 4 ol.l ? ;:’:]'

Hit: -

iPhone Xs

Calculate Speed

EvenOdd

(Vague) Conclusions

* Pisrupting dairy consumption, why not. Disrupting
geometry is a little harder (and useless)

* A tiny teeny bit of maths makes the performance soar

* Stack Overflow, that’s nice. Swift Algorithwm Club, that’s
better

Swiftt Algorithwm Club

* Ray Wanderlicht

* (Classical algorithms with code, explanations, demos and
even animations!

% h’rfp/s://gifhub.com/raywenderlich/swif’r—algori’rhm—
club

Swiftt Algorithwm Club

@ Least Common Multiple

An idea related to the GCD is the least common multiple or LCM.

The least common multiple of two numbers a and b is the smallest positive integer that is a multiple of both. In other
words, the LCM is evenly divisible by a and b .

For example: 1em(2, 3) = 6 because 6 can be divided by 2 and also by 3.

We can calculate the LCM using Euclid's algorithm too:

axb

lem(a, b) =
gcd(a, b)

In code:

func lcm(_ m: Int, n: Int) —> Int {

return m / gcd(m, n) * n

}

And to try it out in a playground:

lcm(10, 8) // 40

You probably won't need to use the GCD or LCM in any real-world problems, but it's cool to play around with this ancient
algorithm. It was first described by Euclid in his Elements around 300 BC. Rumor has it that he discovered this algorithm
while he was hacking on his Commodore 64.

Written for Swift Algorithm Club by Matthijs Hollemans

Switt Geometrie Club?

* Eeeeeeeeeeh...
* ©

* (ther questions?

Zino @kruqazor

